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OBJECTIVE

The objective of this project was to develop new models and analysis techniques for
ARCP-based motor drive and power distribution systems. This was originally to include
both mathematical models and experimental hardware in the form of an ARCP inverter
for a quiet electric drive system and a low-power test bed representing an ARCP-based

power distribution system.




APPROACH

The original approach to modeling and analyzing ARCP-based systems involved three
separate tasks, one of which was mathematical and the other two experimental. The first
task was to develop a behavioral model for the ARCP to be used in system studies. The
second task was to develop a prototype ARCP inverter for a quiet electric drive system,
and third task was to develop a low-power test bed representing an ARCP-based power
distribution system. Based on a change in direction at NSWC, however, the first task was
broadened to consider the analysis of systems with power converters other than the

ARCEP and the second task was dropped completely.

STABILITY ANALYSIS OF POWER CONVERTER SYSTEMS

The design and operation of power systems comprised of multiple power converters is
challenging due to the potentially complicated dynamics in such systems. More
specifically, switching is an inherently non-linear process, so common analysis and
design techniques based on linear system theory cannot be applied directly.
Consequently, circuit-level simulation and approximation techniques for linearizing
converter models are the most widely used approaches for studying these systems. Each
approach has serious drawbacks, however, and the approaches are not completely
complimentary. A circuit simulation typically provides detailed information about an
operating point given detailed information about a system, but owing to uncertainty in
parameter values, many simulations may have to be performed and reviewed at great
cost. Approximation techniques that yield a linear system model permit the use of linear
system theory but may require that considerable “margin” be included in a design to
accommodate the inherent discrepancies between the linear model and actual system.
Moreover, approximation techniques often require considerable expertise or effort,
limiting their utility.

Three new methods for analyzing the stability and/or controllability of the dc-to-dc
converter systems were developed in this project. The most important aspects of each of

the methods is summarized in the following subsections.




Stability Analysis of dc-to-dc Converter with Input Filters

The first of the new methods developed in this project centers on state-space analysis of
dc-to-dc buck converters with LC input filters. Details of this method are described in
Appendix A. The key results are: (1) a linearized state-space model of the
filter/converter system is derived through average-value modeling of the switching
elements, (2) the state-space model is shown to be fully controllable through complete
state feedback, and (3) experiments confirm that control based on complete state
feedback renders a stable system while control based only on output feedback renders an

unstable system. These results should be useful to the designers of individual buck

converters.

Exact Expression for Input Impedance of Buck Converters

The second of the new methods developed in this project involves the derivation of an
exact expression for the input impedance of buck converters. Details of this method are
described in Appendix B. The key results are: (1) an exact expression for the impedance
at all frequencies and (2) a three-way comparison of the exact impedance with the
approximate impedance obtained using conventional state-space averaging and the
equivalent impedance obtained through detailed simulation. In general, the input
impedance is useful in applying Nyquist criterion to the minor loop established when
interconnecting a (load) converter to a (source) converter or distribution system. The
exact impedance is valid at all frequencies above and below the switching frequency of
the converter, whereas the approximate impedance derived using state-space averaging is
only valid at frequencies well below the switching frequency. Thus, the new result is
valuable in systems wherein converters with various switching frequencies are present, as

is anticipated for shipboard systems.

Stability of Periodic Solutions for Piecewise-Linear Systems

The third of the new methods developed in this project involves the derivation of a
technique for assessing the stability of the periodic solution to a wide class of systems
that includes dc-to-dc converters operating in both continuous and discontinuous
conduction modes. Details of this method are described in Appendix C. The key results
are: (1) the derivation of the so-called monodromy matrix for piecewise-linear systems

operated with a switching surface defined in terms of states, inputs, and time and (2)
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simulations demonstrating that eigenvalue analysis of the monodromy matrix (i.e.,
computation of the Floquet multipliers) yields an indication of the stability of a periodic
solution. The monodromy matrix derived here is for quite a general class of systems that
includes as particular cases most of the dc-to-dc converters for which studies of periodic
stability have been reported in the literature. A MATLAB m-file that encapsulates the
highly mathematical technique has been developed to simplify its application.

DEVELOPMENT OF POWER SYSTEM STABILITY EXPERIMENTAL TESTBED

The overarching goal of this project was to investigate instabilities in power systems with
power electronic components. One thrust towards this goal was the development of an
experimental lab setup that would allow the investigation of power system instabilities.

The results of this thrust will be described here.

Acquisition of Existing Equipment.
A significant amount of power electronic equipment was acquired from the Navy. This

equipment includes:

51 magnetically latched electrical contactors,

1 phase-controlled rectifier,

2 9kW DC-DC “source” converters,

a VXI mainframe with analog/digital converter and digital input/output cards,

12 single-pole Auxiliary Resonant Commutating Pole Inverters (hereafter referred to as ARCP’s),
and

¢ one Northrup Grumman microcontroller board.




Figure 1 Clockwise from top left: DC-DC converters, Phase-Controlled Rectifier, Northrup Grumman
Controller, and ARCP inverters with sensing circuitry




Purchasing of Equipment.
The following equipment was purchased to establish the testbed.

e aSorensen 600V, 33A DC power supply to be used in testing the existing DC-DC converters and
ARCP’s,

e a personal computer (PC) to act as monitoring station, controller developer, and web server for
the NetSim,

e a dSPACE 1103 Controller Card. The DS1103 controller board utilizes a IBM PowerPC 604e
processor running at 400 MHz, and a slave DSP, Texas Instruments' DSP TMS320F240, with
which Pulse-Width-Modulated (PWM) signals are generated. The control card contains ample
analog-to-digital (A/D), digital-to-analog (D/A), and digital input-output (I/O) for interfacing
with the power electronic equipment.

e an anti-aliasing filter card for the VXI mainframe. This card will be used to filter analog signals
representing the voltages and currents.

a 3hp, 230V, 1800rpm induction machine, and
a 4.5Nem, 6000rpm AC brushless permanent magnet machine.

Figure 2 Clockwise from top left: PC monitoring station w/ VXI mainframe, AC brushless PM machine,
3hp induction machine, Sorensen DC power supply




Design and Construction of Contactor Layout

Significant modifications have been made to the layout of the power system simulator.
In the original design the electrical contactors were mounted on the side of a rack. In the
new design the contactor layout has been reconfigured so that it may be installed inside a
rack, creating a neater, more compact package as shown in Fig. 5. In addition, the

electrical wiring of the contactors has been redesigned to allow a more general flexibility

in the reconfiguration of the power system.

Figure 3. New Electrical Contactor Configuration for NetSim

High-Performance Controller Board

Due to difficulties encountered with the acquired Northrup-Grumman controller, a high-
performance controller board was designed at Penn State. The architecture of this
controller consists of a floating point processor, the TI TMS320C6711, and a

microcontroller, the Motorola DSP56F803. The two processors communicate via dual-




port RAM, a Cypress CY7C024AV, as will be described in a later section. The DSP chip

is physically located on an evaluation board offered by Texas Instruments, shown in the

following figure.
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Figure 4 TI TMS320C6711 Evaluation Board

The dual-port RAM and microcontroller are located on a board designed and populated at

Penn State, shown in the following figure:
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Figure 5 Microcontroller Board Designed at Penn State

The Pulse-Width-Modulation outputs of the microcontroller have a fiber-optic interface,
to simplify isolation requirements. The board has a JTAG interface, a potentiometer,
switches, buttons, and LEDs used for testing.

In addition, a second board was designed and assembled which contains extra features,

such as RAM and high-precision A/D converters. This board is shown below.




Figure 6 Board Designed at Penn State Containing RAM, High-Precision A/D Converters

The assembled controller board configuration is shown below:

Figure 7 Assembled Controller Board

Interface Using Dual-Port Ram
Asynchronous interface between two processors using dual-port RAM offers fast, reliable

and easy implementation. Even though care should be taken to design the arbitration

10




between processors, due to the features of today’s dual-port RAM such as handling of
simultaneous access of the same address and generation of some signals for
communication between the ports, it has become an easier task.

The figure below shows the interface configuration between the two controller boards
which have TMS320C6711 of Texas Instruments and DSP56F803 of Motorola
respectively. Cypress’s dual-port RAM CY7C024AV is selected for the interfacing
device, which has 16-bit 1k-word, a few arbitration signals, and relatively fast access

speed.

Interrupt

Interrupt

Address Bus Cypress Address Bus
’IMS32T(§C671 1 CY7C024AV : ] Dhsdlg;g?s](a):;
Dual-port RAM
Data Bus Data Bus

CE-, R/W-

Figure 8 System Configuration

Communication Speed Test

The following communication speed test consists of sending 14 words between the two
processors: eight words to the C6711, and six words to the F803. The code is written in C
language for this data exchange test. The figure below represents the sequence of the

code to examine communication time for 14 words..
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Trigger the routine
in C6711

Read completed
A

Start to write Start to read
8 words 6 words
to DPRAM from DPRAM

| Ll

TMS320C6711 T T -

Start to read Write
from DPRAM completed

DSP56F803

Read completed Trigger F803's
& start to write 6 words interrupt

Figure 9 Sequence Diagram for Communication Test

Two modes are implemented and tested for triggering the routine in C6711 from F803,
one is the “Polling mode” and another is “Interrupt mode”. For the former, the C6711
“polls” a certain address of the dual-port RAM to see if the flag to start the fetching is set.
This is one of the simplest implementations and if there is just one routine to run for
every period and if the processor could be dedicated to poll the address during the idle
time, it is possible to make it quite fast with a simple structure. But because C6711
repeatedly accesses a certain memory address with a very short period, this can reduce
the dual-port RAM’s lifetime and increase the possibility of failure.

The latter, triggering the C6711’s routine by interrupt, can be an optimal method, because
the routine is called right after the triggering. This can be easily implemented by using
the interrupt generation feature in the CY7C024. But context saving and restore for the
interrupt takes some time, and it might not be quite shorter than the polling period.

The communication time, T;omm, is determined by measuring the time between toggling
of the LED on the F803 controller board. The F803 toggles the LED right before starting
to write 8 words to DPRAM and after writing data, calls the routine of C6711 by writing
a data to the polled address (polling mode), or to the mailbox of the dual-port RAM
(interrupt mode).

If it is in the polling mode, C6711 polls a specific address every loop. Right after
C6711 senses the data change, it reads the 8 words of data written by F803 from the dual-
port RAM, and then writes 6 words to it. After that, the C6711 triggers the external

12




interrupt of F803 by writing on the mailbox in the dual-port RAM and clears the polling

address.
For interrupt mode, C6711°s interrupt service routine (ISR) is called by the external
interrupt from dual-port RAM. This ISR has same codes with those in the main loop of
polling mode. Similarly, the F803’s ISR is triggered in this mode.

In the ISR in F803 for the external interrupt from dual-port RAM, F803 reads the 6
words from the dual-port RAM and toggles the LED. The time between these two LED

toggling is T,omm, and it represents the time for feedback and commands. C codes for this

speed test are listed in section IV.

Test Results

Figure 3 shows the communication speed test results. It represents the time for 14 words
data exchange in polling mode (figure 3a) and interrupt mode (figure 3b). The channel 1
in the figures is the anode voltage of the LED in the DSP56F803 controller board. It
takes around 4.5 ps for both modes and does not show much difference. However, as

mentioned earlier, interrupt mode will be better way for the interface design.
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Figure 10 Communication Time Experiment. Top Figure: Polling Method. Bottom Figure: Interrupt

Method.
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CONCLUSIONS AND ON-GOING WORK

Three new methods for studying the stability/controllability of dc-to-dc converter
systems have been developed. The most general of these permits the rapid calculation of
Floquet multipliers to assess the stability of the periodic solution to piecewise linear
systems. Presently this method is being applied to self-oscillating circuits in addition to
dc-to-dc converters. A future application is in an automated design environment, wherein

the method would be used to assess candidate designs produced by an optimization

algorithm.
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Stability Analysis of DC-DC Converter Control w/ Input Filters

Abstract

This section will investigate the active stabilization of DC-DC converters with input LC filters using linear system state-space
control techniques. A general continuous-time state-space-averaged model of DC-DC converter systems, including dynamics
associated with the input LC filter, is presented. As an example, a buck converter with input LC filter is examined in detail. For
the case of the buck converter, the linearized system is shown to be completely controllable by the duty cycle of the switching
element, suggésting that feedback control of all four states (input and output capacitor voltages and inductor currents) will allow
stabilizing controllers with input LC filters of arbitrary design. Experimental results confirm that regulating the states of the LC

filter can stabilize the buck converter dynamics.

1 Introduction

It is well-known that the addition of an input LC filter to a DC-DC converter can create instability. The predominant technique
used to study the stability of these systems has been through the use of impedance arguments based on the Nyquist criterion, as
first posed by Middlebrook [1]. Using these arguments, it has been determined that feedback control of a converter is responsible
for instability, as it causes the converter to present a “negative” input impedance to the system. Techniques used to resolve this
problem have centered around the design of input filters that avoid this instability [2][3]1[4][51[6][7].

Another approach to investigate the stability of these systems is through the use of state-space techniques[8][13}[9][10][11][12].
However, the use of state-space control methods to stabilize these systems up to now has not been thoroughly investigated. In this
paper we will use a state-space approach to investigate the active stabilization of DC-DC converters with an arbitrarily-designed
LC filter, shown in Fig. 1, through appropriate duty cycle control. We will begin by presenting the state-space averaged model

that will be used for the analysis. For the purpose of this report one example, a buck converter, is investigated in detail.




I
(¥ 2
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Ui + +
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=V P e Converter |Vo | Load

Figure 1: DC-DC converter system with input LC filter

2 Theoretical Background

A continuous-time model will be used for investigating stability, based upon the state-space averaging technique[13], and is
briefly presented in this section. Basic DC-DC converter topologies contain a single switching “element”, typically consisting
of a transistor and diode, which creates a discrete change in the dynamics of the overall system based upon a duty cycle D.
Assuming linear passive circuit elements (capacitors, inductors, and resistors) and neglecting the possibility of discontinuous

conduction operation, the dynamics can be written in the following state-space form:

Aix+Biu, t <t<tp+ DTy,
x = @M

Aox +Bou, ti+ DT <t < teys,
where x is the state of the energy-storing elements in the converter, u represents the DC sources and loads of the converter, T
is the switching period of the switching element, and D is the duty cycle, which is assumed in the following analysis to be a

continuous variable. The average-value of the system state is given by

x(t) = / | x(s)ds, @

Under the assumption of small ripple conditions (i.e., the switching harmonics do not have a significant effect on the average-

value dynamics), the average-value dynamics can be approximated as:
% =~ [DA;+ (1 -D)A2]x+[DB1+(1-D)Bjju ©))

In this case the switching element is replaced by controlled sources, as shown in Fig. 2. The average-value state error & is defined

by

&8 = X-%, 1G]




(a) ®

Figure 2: Switching element and equivalent model under the state-space averaging technique

, where X is the desired DC state of the overall system. For this presentation we choose the duty cycle D to contain a feedforward

term D, which would in theory achieve the desired state %, and a feedback term g(e)
D = D+gle) &)

Under these conditions, the average-value error dynamics can be shown to be:

é [.DA] + (1 - D) Az] é + [(Al — Az)i‘i' (Bl - BZ) u] g(é) + (Al - AZ) ég(é)

A.&+b.g(€)+ h.o.t. 6)

Due to the DC nature of the operating point of the converter, it is convenient and appropriate to neglect the higher-order error
terms. Using this form, linear system theory can be used to determine appropriate methods of stabilizing the controller while
achieving sufficient closed-loop bandwidth. The feedback term can consist of PID or any other type of feedback control. For the

purposes of this paper we will concentrate on proportional feedback control of (potentially) all states of the system:
D = D+Xle . M

Although this type of control may be insufficient for a practical system, it will serve to make fundamental conclusions regarding
the active stabilization of the overall system. It should also be noted that our converter models neglects loss mechanisms, which
can also have a significant effect on the stability of the system. Once again, our goal is to make fundamental conclusions regarding

stability rather than generate precise results.

3 Example: Buck converter with input LC filter

We will study the control of the DC-DC "buck” converter design shown in Figure 3. Parameters for the converter, which will be
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Figure 3: DC-DC "buck” converter with input LC filter. Top figure: actual circuit. Bottom figure: equivalent "average-value”

model

Input Inductance (L;) 100mH

Input Capacitance (C;) ImF

Output Inductance (L,) 10mH

Output Capacitance (C,) | 470uF

Input Voltage (V;) 24V
Output Voltage (V) 12V
Output Current (I,) 6A

Table 1: Component and Operating Point Parameters of Example DC-DC “Buck” Converter

used in the stability analysis, are provided in Table 1:

We will assume that we desire an output voltage V,, and that we are measuring the output current I,, which is assumed
constant. We will also command an "input” voltage v.; = V; and an input current ¢;; = %I,. Using the state-space averaging
technique and assuming continuous current conduction, the dynamics of the average-value system variables are given by the

following set of equations:




or

We define the following error terms:
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We define:

1 D
0 = 0 -
1
- 0 0
A, = L
o 0o o0 Z
D
[ 0 -z O
o
ViC;:
0
b =
0
A
b LD -
kT = [Kci Kli Kca Kla:|

‘We can analyze this system of equations using standard linear control theory by neglecting the higher-order terms and focusing
on small-signal controllability and stability. Our first step is to check controllability; if controllable, we then attempt to determine

values of K,;, Ki;, Kco and K, that will allow us to achieve stability.

3.1 Controllability

The controllability matrix [14] of the above linearized system,
M = [ b. A.b. AZb, Alb, ] a4

can be shown to have the following determinant:

M| = D2L;C, [LoI2 + CiV?] [Lid2 + C,V3) + I2 (C, Lo — C;: L;)? as
- CHLIC3LY

Inspection of (15) reveals that it is positive regardless of circuit parameters and loading conditions, hence the controllability
matrix will always have full rank and the overall system is controllable. Therefore, in theory the poles of the system can be
arbitrarily placed and therefore an arbitrary bandwidth can be prescribed to the controller if all four states of the system (input
and output inductor currents and capacitor voltages) are regulated. In practice bandwidths will be limited by the switching
frequency of the converter. The main contribution of the above analysis is the notion that incorporating feedback of the input

filter inductor current and/or capacitor voltage into the duty cycle of the converter can stabilize the overall system, regardless of

the input LC filter design.




3.2 Stability Analysis
3.2.1 Stability Analysis of Output State Control Only

We first analyze the stability of the system when only the output states of the converter are regulated (i.e., K; = Kj; = 0). The

characteristic equation of the system is:

T _ 4 INKG Ko A2 D22 _ KooX?
IAe +bek ,\I| = A+ CiVi Lo + GiLi 7 CiLo + C L CoL,
_LK;)? + L,DKiA? 4 DKX | LK) DEi) _ _Kiod
«LiV; CiViL,o CiLo CiCoLo Vs CiLiL, Ci;L;iL, (16)
4 JoDEA o 1 Ko LKy
C'.CDLO‘/. CiL(CoLQ C{LiCoLo CiLiCoLaV(
= 0
or:
2L + 4 oA
[eAA C‘L,, CiCoLoVs
N 5 LI ») W 1
4 ,\2 A 1 CiLiVi  CiLiLo  CiLiCoLoVs _
(A*+ C'L¢ o tonen) t [ K. Ki Ko Ko ] = 0.(7n
D CANR 1Y 22 SR —
CoLo Ci;CoLoV; C;LiCoL,
2% 4 LDX A
C.ViL, CiL:L,

In order to determine the marginal stability condition, i.e., when at least two of the four eigenvalues of A, + b.kT are on the

imaginary axis(or one of the four is zero), we set A = jw, and substitute it into eq. (17), and set K;, Kj; = 0. The result is:

4 _ w? _ DW?_ _uW? 1 w? Djw 1
(W~ gL — Gt — oo T omcry) t Kool t bty — TLicaL) (18)
: 3 2 .
Jw”  IoDw® __ jw _
+Kio (i - oVt — ons) =0

If we split the real component and the imaginary component of this complex expression, the equation for real part is:

w? 1 I,Dw? _ 4 w? D%w? 1 19
(&1; — omicor Keo — Gwi Ko = —'+gn + L + 8% ~ Tt (19)
And the imaginary component is:
_LoDw __ W w = 20
cid i Keo+ (L7 ~ oiir; ) Ko = 0 29
These expressions can therefore be written in matrix form:
2 2 2,2 2
ws 1 _ doDw it w Diw w 1
C.L, ~ GiLiGLL, A Keo | | ~"+o + G, Y 0.5 ~ Lok, @)
3
I, Dw w o w K, 0

CiCoLoV; L, CiL:Lo




If we define:

w2 1 _ I,Dw?
CoLo CiLiCoLo CiViL,
T =
I, Dw W w
CiC.L.V; I, — CiLiL,
D% 1
RR = w? +CL + &t +c.,L,, CiL:iC.L,
0
then
KCO 1
T'RR
K!o

22

@3

When w = 0, T is singular. In this condition, it can be shown that a marginally stable system occurs when K¢, = 1. With

the obtained Ko, K;,, we calculate the corresponding eigenvalues of the system and keep the points that make the system at

least marginally stable. Finally we get the locus of K, and K, that make the system at least marginally stable, as shown in Fig.

3.2.1. As will be shown in the next section, the interior of the locus consists of the set of K, and K}, combinations that make

the system stable.

3.2.2 Analysis with Routh-Hurwitz Method

When K;, K;; = 0, the characteristic equation becomes:

4 _ Kioy3 1 D? 1 K LDK, ) y2
il (ciL; +ar ton T et T i) A

I,DK.o _ _Kio 1 __ K
Hegt%: — e+ (orer — ondr:)

The Routh-Hurwitz Criterion Table is therefore given by:

4 _ Keo . LDKi 1 K
5 1 an+ Pt - S+ B arbr - ofern
3 _Kig DK, _ _Kig 0
Lo . CiCoLoVi  C;LiLo
52 + ok — e+ I,DKio , _I,DK., 1 Ko
CiL'o Co oL, CiViL, CiCoViKio C;L;CoL, C; LiCoL,
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it = (—'IDDKEDCiViLiKlo + DsIchoV;ZCoLiKlo + IoDKcoCiViLiKla
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Figure 4: Locus of Marginally Stable Controller Parameters




From the table we see that a stable system must satisfy the following conditions:

_Klo

L,

D* 1 _ K  IDKp  IDKe
CiL, CoL, CoL, GiViL, CiCoViKy,

"IoDKczaCiViLiKlo + D3IchaV;CaLiKlo + IaDKcaCiV;LiKlo
+I*D*K ., K% C,L; + I?’D*K2 L,L; — K3, D*V?C?

—IODK?OVL'CE - IoDKcaLo‘/icaKlo < 0

1 Ke
C;L;C,L, C;L;C,L,

From eq.(25), we get
Ko, < 0
From eq.(26), we get
Ki,D*C,V; + C;V;Kjo — K:oCiViKio + ILDKECo + I,DK oL, < 0
From eq.(27), we get

—IoKfoCiLiViKlo + DzIchoKloViCoLi + IchoCi‘/iLiKlo + IozDKcoKlzoCoLi

+I2DK2 L,L; — K2 DV2C? ~ [,K} ViC? — I,K . Ki,L,ViC, < 0

0

From eq.(28), we get

Ko < 1
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(28)
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(30)
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(32

By testing the values of (K., Kio), we find that we get the same locus as displayed in Fig. 3.2.1. Furthermore, Routh-Hurwitz

explicitly shows that it is the interior of the locus that consists of the stable control parameters.

The results of this analysis show that the range of stable control parameters for this system is quite small. This is exacerbated

by the fact that, in practice, we would limit the value of K, to negative values, as regulation of the output voltage is usually the

main priority of the controller. In this case the set of stable control parameters is essentially negligible. Another conclusion drawn

from the locus is that, with output state control only, regulation of the output inductor current is essential to achieving stability.




Figure 5: Buck converter system in the experiment

4 Experimental Results: Buck converter with input LC filter

To illustrate the validity of the previous analysis, experiments have been performed on the NETSIM buck converter with input LC
filter. To avoid the interaction of the converter with the inner dynamics of regulated DC power supplies, batteries were used for
the input voltage V;. Control of the converter was implemented using a dSpace DS1103 controller card. The DS1103 controller
board utilizes a IBM PowerPC 604e processor running at 400M Hz, and a slave DSP, Texas Instruments" DSP TMS320F240,
with which PWM signals are generated. The update of the commanded duty cycle and sampling of the converter states was
performed in synchronous with the switching frequency.

The experimental buck converter circuit is the NETSIM converter discussed previously. The component parameters of this
converter are those of the example in the previous section. For this experiment two 12V batteries were series-linked as the input
power supply (hence V; = 24V. The commanded output voltage in the experiments was V, = 12V, An RL circuit was used for
the load, resulting in an output current of approximately I, = 6A. The switching frequency of the IGBT in these experiments
was 20kH z. At this operating point the buck converter was operating in continuous-conduction mode. A diagram of the setup is
shown in Fig. 5.

In the first experiment, only output states(v., and ;,) were regulated, i.e., the control gains for the input state variables were set
to be zero. The output control gains were increased until an instability was generated, as can be seen in Fig. 6. In the second
experiment, the control gains of the output states are the same as in the first experiment, but the input capacitor voltage is also

regulated(K,; = —3). Inspection of Fig. 7 reveals that this additional regulation eliminates the instability.
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5 Conclusion

A method of actively stabilizing DC-DC converters w/ input LC filters has been presented. A buck converter was analyzed as
an example and revealed that, with addition of feedback control of the states of the input LC filter, the overall system is fully
controllable, and therefore that the converter can be stabilized regardiess of input filter design. Experiment results on a buck

converter verifies the conclusion of the analysis.
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Abstract — A general method of exact calculation of frequency
characteristics of outputs for piecewise-LTI (linear time-
invariant) periodic systems with periodic inputs is developed.
The method is used to find the input impedance of a switching
buck converter in continuous conduction mode.

I. INTRODUCTION

Methods to ensure the stability of dc power distribution
systems that are comprised of several more-or-less
independently designed and operated source and load
converters have received considerable attention in recent
years [1-4]. Prominent among these methods is a family of
criteria based on a comparison of equivalent source and load
impedances, which represent the parallel aggregation of all
sources and loads, respectively, in a linearized model of the
system. More specifically, the ratio of the equivalent source
output impedance to the equivalent load input impedance is
taken as a minor loop gain that must satisfy the Nyquist
stability criterion [5] to ensure the stability of the linearized
system. It is assumed (usually without rigorous justification)
that the results of stability analysis for the linearized system
will also be valid for the actual system. Various stability
criteria in this family differ in the form of a so-called
forbidden region that is related to restrictions on the value of
the source-to-load impedance ratio that are introduced to
ensure that the Nyquist criterion is satisfied. An aspect
common to all criteria, however, is the need to characterize
the source and load impedances over the whole interval of
frequencies for which the minor loop gain can encircle the
point —1+ ;0 in the complex plane.

Due to the switching nonlinearity of power converters,
frequency characterization of their input or output impedance
for stability analysis is not a trivial task. Two different
approaches can be used. The first approach is based on
analytical average-value modeling of the system. Since the
Nyquist criterion is valid only for linear plants, a linearized
model of the system is required, which is achieved by
averaging. One of several existing model-averaging
techniques [6-10] is used to obtain the frequency
characteristics of the converter. The results obtained by
averaging are known to provide a good approximation only

Vina € L
x == <
D C R
VinO
Zin()

Fig. 1. Switching buck converter with a periodic input and a resistive load.

at frequencies that are significantly below the switching
frequency, although certain corrections can be made to the
technique to improve its accuracy [10].

The second approach to characterizing converter
impedances relies on empirical methods. The most direct of
such methods is physical testing using a constant source (or a
fixed frequency source for ac systems) and a variable
frequency sinusoidal source along with a means for
measuring terminal voltages and currents of the converter at
various frequencies. The constant source is used to supply
the “base-line” power for the converter, while the variable-
frequency source is swept over the frequency interval of
interest, so that the relationship between the complex values
of the input (or output) voltage and current at each frequency
can be determined. This method of frequency
characterization can also be applied in a computer simulation
of the converter.

While the empirical methods can provide accurate
impedance characteristics over a wide range of frequencies,
these methods are typically very labor-intensive and/or time-
consuming. Also, since the results are obtained for a non-LTI
(linear time-invariant) system, their usefulness for the
Nyquist criterion or other stability analysis techniques for
LTI systems is not clear. On the other hand, the resuits of

This work was supported by the Office of Naval Research under grant number N00014-99-1-1004.




linearized model analysis only guarantee the stability of that
model, while the actual system can be unstable in some cases
even when the model is stable [10].

In this paper, a method of exact calculation of frequency
characteristics of outputs for piecewise-LTI periodic systems
with periodic inputs is introduced. The idea of the method is
analogous to that in [11-13]. The method can be applied to
any switching converter model in continuous conduction
mode (CCM) that is comprised of ideal switches, ideal
diodes, and linear components, with fixed duty cycle ratios of
all switches. To illustrate the suggested method, in Section II
we use an example of a switching buck converter with
constant resistive load (Fig. 1) operating in CCM. This
converter represents a typical (although somewhat simplified)
load in a distributed power system. The general description
of the method that can be applied to any piecewise-LTI
periodic system can be found in the Appendix. As our
experience has shown, however, formulae (A.9) and (A.17)
are more suited for computer treatment rather than human
analysis, and compact symbolic results for simple systems
can often be obtained faster by analyzing a particular system,
as in Section II. In Section III we compare the results of the
new method to those obtained using averaging methods and
time-domain simulation.

II. ALGORITHM DESCRIPTION

In order to find the frequency dependent input impedance
of the converter shown in Fig. 1, we consider the input
voltage to be comprised of a dc component and a complex
sinusoidal component

I,in = VinO + V:‘n(»ejm' 4 (1)
where the first term ¥V}, is the dc or time-independent part,
which is included for generality but, as will be seen later,
does not affect the final result; the second term is the
sinusoidal component that varies with an arbitrary frequency
o and has a constant amplitude V,, which may be complex.
We define the input impedance of the converter as

V() Vi
Z""(“’)‘m)‘m ; @)

where I, (m) is the frequency component of the input current

at frequency o, which will be calculated by means of
standard Fourier analysis applied to the exact time-domain
solution of the state-space model of the circuit. With the
assumption that all components of the converter are ideal, the
state-space model can be expressed by

LAl EEa o

c RC

To reflect the switching behavior of the circuit, input to
this model is taken to be not ¥, but a modified input voltage

¥, (t) that is defined to be

AR

It is worthwhile to note that this simplification is possible
only due to the particular topology of the buck converter. In
general, switching cannot be entirely moved into the inputs of
the system. The exact time-domain solution of the state-
space model, however, can still be found, as shown in the
Appendix.

The solution of (3) for each time interval where V' (t) isa

continuous function can be found as a sum of the response
forced by V' (t) and the solution of the homogeneous system

with ¥V, (£)=0. This latter solution can be expressed for the

nT<t<(n+d)T
otherwise

neN (4

inductor current variable as

Lo(0)=Ce™ +Cpe™, ®)
where
=t b L 6)

2RC “V4R*C® IC

and the constants C; and C, are determined from the initial

conditions for the time interval under consideration. Because
the system (3) is linear, the complete response can be found
as a sum of the transient response (5) due to the initial
conditions and the responses forced by the input voltage over
each switching cycle. Once the part of the n-th cycle when

V, () #0 is complete, the forced response of the system due

to this cycle can be described by the same expression (5).
The constants C, and C, are now determined by the values

of the state variables at the moment (n+ d)T that are due to
V,,'(t) action during the first part of the cycle.

This approach allows us to obtain an expression for the
input current /,, (), which is defined as

1= () nT<t<(n+d)T
710 otherwise

™

The expression for this current that we get is a finite series
of terms that represent contributions from the initial
conditions and from each switching cycle prior to the current
time ¢, including the cycle that contains £. Once the series
form of I,,(Y) has been established, the integral Fourier
transform is applied to find the component of the current at

the desired frequency ®. Finally, (2) is used to determine the
input impedance of the converter, which was found to be




1 P
oll| —-oC| +—
ol R

= , 8
Za(0) d-Q,(0)+Q,(0,T) ®
where
1 Jr1 1
Ql (0))= m"*’][(—&-— COC)O)C —F:I
0 (o1)= ol 0le) - aviola )
€]

a5, {1 oy,
®)=—=+a, ,0C - ji| ——oC [o+—=
71,2( ) 2 1,2 Jl:( ol ) R ]

(1 _ e(jw-a,‘z)rﬂ' )(1 _ e(ju)—a,_,)(l-d)T)
(jm" 2, )(1 - e(jm—a,,,)r)

Expression (8) permits direct calculation of the input
impedance of a buck converter operating in continuous
conduction mode at any particular frequency @, given the
essential parameters of the converter, that is, L, C, R, T, and
d.

It is interesting to compare (8) to the expression for the
input impedance obtained from the state-space averaged
model [1] of the buck converter, which is

le:(mLL - mC) + %:l
= . 10
Z,‘,,,v (m) 7 o) (m) (10)

®(a1.2 ) =

This expression can be obtained from (8) by taking the limit
T—0 (which corresponds to infinite switching frequency), as
that leads to Q,(w,7) - —d(1-d)Q,(»)-

III.VERIFICATION

As a point of comparison between the impedance
computed using the new method and using averaging, the
input impedance of the circuit in Fig. 1 was computed by
both methods over the frequency range from 10 to 10°
rad/sec. In addition, two time-domain simulations of the
same circuit were performed using MATLAB: one with the
assumption that the diode and switch were ideal and the other
using more realistic models [13-14] for these devices. The
following parameter values were used for comparison: C =
200 pF, L= 100 pH, R=2 Q, d=0.375, T= 100 ps, with a

resulting switching frequency @, = iT’E ~ 6.28-10% rad/sec.

Bode plots of the resulting impedances are shown in Fig. 2,
where Fig. 2(a) is based on the data obtained by the new

3 Input impedancs of a buck converter - new method
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Fig. 2. Buck converter input impedance obtained by: (a) new method; (b)
averaging; (c) ideal time-domain simulation; (d) simulation with realistic
device models.




approach and Fig. 2(b) on the data that were obtained using
state-space averaging. Fig. 2(c) and (d) represent the results
of time-domain simulations, with ideal and realistic device
models, respectively. It can be seen from the first two plots
that at low frequencies the input impedances calculated both
from (8) and from (10) are very close to each other. As the
frequency increases towards the switching frequency,
however, the averaged model fails to predict the correct
behavior of the buck converter. The impedance predicted by
the new method is shown to be very close to that obtained via
simulation, although there are some small differences that are
likely due to computational errors and non-idealities included
in the more realistic device models.

Although the frequency interval where there is a significant
difference between the impedance computed using the new
method and the well-established averaged model! lies outside
of the scope considered in most current applications, we
believe that the new approach nevertheless can be useful for
stability analysis. While most systems do not operate at the
frequencies close to or above the switching frequency, the
results in this region may still be important in some cases for
the overall stability of the system. The suggested method
allows one to calculate impedances and other related
characteristics for the actual (non-linearized) system at all
frequencies quickly and accurately, which provides an exact
estimate of accuracy for the results obtained using averaging
and other approximation techniques. Not only the new
method is much faster than time-domain simulation; it also
yields symbolic expressions for system characteristics, which
can be very useful for subsequent analysis.

IV. CONCLUSIONS

The suggested method of exact calculation of input and
output impedances for power converter systems provides a
new tool for fast and accurate frequency characterization of
such systems as an alternative to physical testing and time-
domain simulation. The results can be used for stability
analysis, as well as for evaluation of the error that is
introduced by using averaging techniques.
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APPENDIX
Consider a system:
& _ A(H)x + B(t
dar ()x + B( )u,tZO, x(0)=x,> (8))

y =C()x+ D(t)u

where x, u, and y are vector variables, and matrices C(?)
and D(t) are periodic with period 7.

We need to find the response of the outputs at a certain
frequency ®. We define this response as

1 i
=lim— It =
yw)=lim—[y(t)edr 42)
- l Iim _I_NZ_I ('”'i,)r (t)e-_lmldt
- T N0 N poo a7 4

Here we assume that all integrals and limits exist, which
will always be true in case of a stable system. The values of
T and ® do not have to be related in any way; o will be
associated with the input vector # which we presume to be
independent but known.

Let us assume that we can find the following
representation for x(¢) when nT <t <(n+ )T

x(t)= 0= nT(nT )+ K (e=nT)e™ + 4 o)
+ K"(t _..nT)e—jm"T + 0(1‘ - nT)




where matrices @, K*, K, and O are all functions of ¢t -nT,
but not ¢ or n separately.

Applying (A.3) consecutively at each switching cycle, we
get:

x(nT)= " (T)x, + f_:(l)"'" (T)x
[K*(T)et" 4 K=(T)e™ 0" 4 O(T)]

(A4)

Substituting (A.1), (A.3), and (A.4) into (A.2), we obtain
the following expression for y(®):

.V(m) = yl("’)"‘ yz(‘”)‘*‘ )’3(0))'*' J’4(‘°)+
+ ys(‘”)"' YG((‘))+ y7((°)+ U,
where

7(0)=2, Jin|
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Let us assume that

lim " (r)=0, (A.8)

which will be true for any asymptotically stable system.

By calcﬁlating the limits in (A.5), we get:

.V(m)=S1 +0, (]_a’)(T))_lSz +U,

$i=K ifes kez
S, =K*(T) T (A9)
S, =K: +K; n(2k +1)
~ ~ 1 =
S, =K*(T)+ K (1) T
S, =K, +K; +0, 'fa)—ﬁ
S, =K*(T)+K~(T)+0(T) T

This result can be applied to an arbitrary piecewise-LTI
periodic system, that is, a system of the form:

(n+d )T (a.10)

dx
2 AFEBE (hg r<es<
y=Cx+D,u

¢£=1.L; A,,B,,C,,D,,d, =const

where we assume the inputs to be periodic signals with
frequency o:

u=u,+F,e";u,,F,=const. (A.11)

We need to find the representation (A.3) for the state
variable vector x, then we can use (A.9) to calculate y(w).

Let us use the following definitions:
[®,, K7, K;,0,]1=[0(-nT), K*(t=nT), (4 13
K~(¢=nT), Ot - nT)]- ™D

Here the variables on the left side are also all functions of
t—nT, and the index ¢ designates the time interval
(n+d, )T <t<(n+d,)T where they are defined. Since
the parameters in the state-space model (A.10) are different
for different values of £, it is necessary to consider each time
interval separately. During each interval, (A.10) describes a
linear time-invariant system, so we can use the well-known
solution for x from linear systems theory [5]:

x(t)= et x(t, )+ 'fe”("‘)Bu(T)d'c ,
T

where 4=4,;B=B,;t,= (n +d,, )T . Using mathematical

induction, it can be shown that in case of the input (A.11), the
functions defined by (A.12) can be calculated as

(A.13)

8, = etul-trae) g

i=]

E { Aplt-(n+dp)T] }B F +e41m["(”+d1-1)7'] x

¥, -1)5,5 |

MI

(-

=




K; =0 (A.14)

47 (e Aclt-(nedey)T] _ I)B uy +

¢
A, -jelt-nT) n
Ol =¢ eA‘[/—(er,_')T][ZI[( I—I\P ) ( —I)Bjuo]

J=l \U=j+!

where
A, = 4, — joI
A,=d,—-d,, (A.15)
lPt - eA[A,T

— oAb
¥, =e™

Here I is the identity matrix and all products (IT) are taken so
that the terms with higher indices are applied from the left
side, that is,

(ﬁ%)=‘l’,_ R T (A.16)

4=1

etc. Also, if the upper index of a sum (product) has a smaller
value than the lower index, that is, if the sum (product)
contains no terms, then the value of such empty sum
(product) is assumed to be zero (unity).

Using (A.7), (A.10), (A.11), and (A.14), we finally get:

L N
$DFA, if 022
st T

U, = j
f:Dl[EAt +éuo * ifo _ 2nk
I=1 ( e—jmd,T — g IMeT )] T
&(1)=11%, (A.17)
t=1

)= 4{(frv. . -ner)

{=1 { \i=t+1

K (T)=0

~ L (L ‘

or)= ;{( I1 ‘P,)A," (¥, - I)B,u(,} i
_Y&fo g (8 (A.17)
- T g{c 4 ( ! H\P“”)} continued

(\Ylu) "1)91 _TBlFlAl>}

14
K== A7
N TE{Q w

K, =0
0, = Tt ‘{C e/ 'T Y- )Qz "Qs)}
where

f=1 \m=i+}

Q, = A, B/F, + Z( ﬁ‘l’m)Aﬁ (¥, ~1)BF,

0, = A(_lBeuo +lz_l ( ﬁl‘{lm)Ai_l (\Pi "I)Biuo (A-18)

i=l \m=i+l
0, = 47 L (e _1)B,u,
()

Using (A.9) and (A.17), the exact frequency components of
the outputs of the piecewise-LTI periodic system (A.10) at a
given frequency o of the input signal can be readily obtained.
For a power converter system with ideal switches and diodes,
assigning the unknown terminal voltages and/or currents to
be the outputs of the model (A.10), input and output
impedances can then be calculated using (2).
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Stability of Periodic Solutions
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Abstract - An analytical nonlinear technique is developed for
stability analysis of periodic solutions for dc-to-dc power
converter systems with multiple independently controlled
switches and possible discontinuous topologies. The new
approach, based on discrete nonlinear maps, is exact under the
assumption of ideal switches and is easily programmable, which
allows for nearly instantaneous evaluation of stability of
periodic solutions for dc power systems under a wide range of
input conditions. The results obtained using the new method
were in agreement with those acquired using much slower time-
domain simulation method. The exactness of the new method is

a definite advantage over existing linear methods and other

approximate techniques.

1. INTRODUCTION

There have been numerous papers [1-4] devoted to the
stability analysis of dc-to-dc power converters and systems
constructed by interconnecting such converters.  Until
recently, most of these papers used state-space averaging [1-
3, 5] or other approximate linear methods [4] to simplify the
problem.  Such methods, while widely used, are not
guaranteed to provide a correct assessment of stability for the
actual nonlinear power system. Consequently, circuit
designers often resort to unduly conservative choices to
ensure adequate stability margins. Another popular practical
method of stability analysis of power systems is by means of
numerical time-domain simulation, using either specialized
simulators that are available commercially or general-purpose
software packages such as MATLAB. Time-domain
simulation provides a simple means for stability assessment

of a system with known inputs and parameters, along with the

0-9999-9999-0/03/$17.00 ©2003

additional benefit of accommodating arbitrarily realistic
models for switching devices and other system components,
but there are also significant drawbacks to such analysis.
Simulating a system for a large number of different input
conditions or system parameters caﬁ be very time consuming,
and the presence of instability may not be immediately
obvious on a short time scale, thus requiring longer
simulations. Moreover, numerical errors may accumulate
over many switching cycles, making the result of the
simulation somewhat less reliable.

In recent years, several authors have applied exact
nonlinear analysis methods to dc switching converter systems
[6, 7]. For such analysis, a mapping function (also called a
Poincaré map) can be defined that is basically a transition
function for the state variables of the system over a switching
cycle that includes changes due to external inputs. In the
normal mode of operation of such systems, there exists a
periodic solution (a fixed point of the mapping), that is, a
point in the state space that repeats itself after each switching
cycle. The asymptotic stability of such solution can be
defined as its ability to attract points that are sufficiently
close to it, which means that in the case of a small
perturbation the trajectory will eventually approach the
periodic orbit. A more rigorous definition of stability can be
found in [8].

To assess the stability of periodic solutions, Floquet
theory for periodic systems can be used [6, 8]. In the present
paper, the method employed in [6] is developed for systems
with multiple topologies that can exist due to several

independently controlled switches and/or presence of
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discontinuous modes [9] in the system. Explicit closed-form
expressions for the characteristic (Floquet) multipliers of a
periodic solution for all such systems are obtained in Section
II. These expressions can be readily used in computer
analysis without requiring time-consuming numerical
simulations. In Section III, two typical examples of power
systems are analyzed using the new approach. The same
systems are also analyzed using time-domain simulation, and
the results are compared to show the validity and advantages

of the new method.
II. ANALYSIS

Let us consider a general piecewise-LTI (linear time-

invariant) system with constant inputs:
dx
i A(t)x + B(t)u, u = const

Alt)= A, = const
{ ()=t =const dk_ T<i-kr<dit ()

B(t) = B,, = const
m=1.N;0<dk <1
where x and u are column vectors. The integer variable & is

the switching cycle number, T is the switching period, and N

is the number of circuit topologies that the system goes
through during one cycle. The value of each d,’,‘, defines the

instant d,’f,T counted from the beginning of the k” switching

cycle when the system is switched from m® to (m+1)"

topology during that cycle. Matrices 4 and B are assumed to
be independent of k. By definition we set d(l)‘ =0, d]’f, =1 for
all values of k, which means that ¥* switching cycle starts at
t=kT and ends at ¢=(k+1)T. All the other d,’,‘2 values are

determined dynamically during each cycle due to the state

feedback controls and/or presence of discontinuous modes.

Let us assume first that all switching instants d,’,‘, for the

K" cycle are known. Defining x,’f, to be the value of the

state-variable vector x of the system during the m" switching

instant of the ” cycle, that is, x,'f, = xl(k + d,’,‘, ﬁ_l, and using

results from linear systems theory, we get the following

expression for xlk :

xF =0kt +wfBu @)

where we introduced notation

k k_ k. gk _ AnthT
Ay =dp—d, ;. Op=e
t 2 2.3
¥(4,6)= IeATdt=It+-AL+ AL €)
0 20 3

vk =w(4,,0%T)

Here I is the identity matrix of the same size as 4. Notice
that A,,¥F +I=®% . If matrix 4, is invertible then
wk = 47! ((p’,:, —1).

Now, taking xf as a new initial value for the second time

interval (k +d1k )I“ <t< (k + d,f )’ , and using the same

method for all the remaining topologies, we obtain the
following exact expression for the state-variable vector of the

system at the end of the switching cycle:

<kt =k = plak gk dk )

=TNx* +BX @
=1l X T ENu
where H‘}, stands for the following matrix product:
2 ok k. gk k
1'[‘17,=H<D,- =04 -0, -0y )

9
and E"; = .Zlngﬂ‘y"kB" . Equation (4) provides an exact
i=

expression for the Poincaré map of the system, assuming that
all switching instants are known. In this paper, we are
interested in the stability of periodic orbits of the system, that

is, solutions that satisfy the condition x(’)‘“ = x(’)‘ = xg, which

means that x; is a fixed point of the mapping. Such
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solutions are periodic with period 7, since we assume that the
topologies and the form of switching conditions do not

change from one cycle to another.
From (4), we find that if det(I —va );t 0, which is often

the case, there is always exactly one fixed point for the given

values of switching instants, which is xy = (I - l'I{v )_IE'}i,u.
In practical systems, the equations for the switching instants
d,’,‘, , which are defined by the control method and contain x,
as a parameter, must be solved together with (4) to find the
actual values of d,’,‘, and x;. Typically, the complicated

nature of switching conditions does not allow an analytical
solution, so this must be done numerically. For the rest of

this paper, we will assume that the fixed point x; is known,
and we will investigate the stability of the orbit defined by it.

In our analysis we will use Floquet theory [6, 8].
According to this theory, if we define D, and U to be

respectively the values of the switching instants and the
inputs for our periodic solution, and introduce small

perturbations:
xt =xg+3%, dk =D, +df, u=U+i (6)

the periodic orbit defined by x will be stable if and only if

the eigenvalues of the matrix H; in the first order expansion

= 135 4 o )
all lie within the unit circle in the complex plane. Thus,
computation of the eigenvalues of H| provides a conclusion

about the stability of the periodic solution.

Let us consider the following form of switching

condition:

Gm(xg, dk, dk, ey dﬁ,u):

O - X k+d,’f,)1' +V,,,d,’,‘,+C,,,+Pmu=0

@®)

Here m=1..N -1, ¢,, is a constant vector that defines

which state variables will be used to determine the m"
switching instant, while V,, C,, and P, are scalar
constants for each m that are employed to adapt (8) for
different cases of switching. The condition of the form (8) is
quite general, as it can be used to describe both switching due
to PWM controllers (where V,, will be the ramp voltage of
the input to the comparator) and transitions into
discontinuous modes that occur when one of the state
variables reaches a certain value (typically zero), as well as

other cases. In the case of discontinuous mode transitions,
V,, should be set to zero.

Substituting (6) into (4) and (8), and leaving only the first

order terms with respect to perturbations, we obtain:

FhH =if-£k+i&{‘+ +—ﬁ—z§" 1+i 7

o od T ey M T
0=001 3k P01 gk B0,
ox od, Ou )
<o=2"_2,}k+@_2.,§{‘+£‘23§+ﬁ’.2_,;
ox ad] 6d2 ou

0= 90Nt gk BNt gk, BOw-1 gk, BON
ox adl BdN_l au

-1

Next, we express c?lk from the second equation of (9),
substitute it into the third equation and find c?é‘ , and repeat
the process until the last equation to find d ,',‘,, m=1.N.The

following expression valid for all c?,/,‘, can be obtained:

ak =y7 &k vk 0

" 1=0 ap>a;>.>0 141 L 80q,
a;=1...m- (—— l) n—=
otp=m i=06da,~
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Here the inner summation in the brackets is taken over all
the possible combinations of / different integer numbers

a;,i=1.J] suchthat m=ag>a; >...>0a; >0.

Substituting (10) into the first equation of (9), we get an

expression of the form (7), where

f of
H=7 mzilad

7, f (11)
ek au mz_l od,,

By substituting the expressions for y; and y ; into (11)
and rearranging the terms in the summations, the following

result for H; and H, can be obtained:

[ of .l Joy, ‘30"11-
- d, d,
H1=§f—'+NZl 5 0dy, j=10dy, Ox
O =l ooy y+1 ! a"a,
a;=1...N-1 od, (12)
( o b 8oy, doyg,
o N-l ada, i=10dy, Ou
Hy=24
2 ou = a,>§>a, Y+1 ! ao'a,
a,=lA..N—l- i oad
Calculating the derivatives in (12), we get:
oo dc
_a;‘l‘:q’an?; "éf‘=q’aEa+Pa
aG'a = (PaT(AaXa + BaU)+ Vo
od,
—_— =3 (p fa
ada |a<B ﬁ or
of N. o o
—=1I =Ey; =11V Iy
o N Bd, ethe

where X, =II{'xy +E,U is the point on the periodic orbit

|

|
of the system at t=d T, and we defined
Iy = T[(Aa Ay 1 )Xo + (Ba By )U] For all variables

in (13), we omit the upper index k that we used before for the

cycle number since they are now calculated for the periodic

orbit and only depend on xy3, D,, and U, not the

perturbations.

The expressions (12), (13) can be easily programmed for
automatic calculation of Floquet multipliers for any system of

the form (1) with switching conditions as in (8) and a known

fixed point x; .

III. ResuLts

Let us apply the developed method to calculate the
Floquet multipliers and thereby assess the stability of two
example circuits. All the switches and components of the
circuits are assumed to be ideal. The first system that we
consider (Fig. 1a on the next page) is a basic buck converter
circuit; the second one (Fig. 1b on the next page) is an ARCP
(auxiliary resonant commutated pole) circuit [10] featuring
four controlled switches. Both circuits are assumed to have

constant (dc) inputs.

The chosen circuits are similar in the way that when one

of the main switches (.S; or S, ) of the ARCP circuit is open,

the right part of the circuit behaves as a buck converter with

an input voltage equal to the voltage across capacitor C5.

Since the control method is not essential when applying
the proposed stability analysis method as long as switching
conditions have the form (8), a basic integrator was used to
control the output voltage of both circuits to generate the
results presented in this section. Similar results were
obtained with other controllers, e.g. a lag-lead controller with
an integrator as in [6]. However, the increase of the system
matrix size in the latter case due to the controller states
introduces additional Floquet multiplier values related to the
controller dynamics, wﬁich makes the results less transparent
(although the analysis is the same). Therefore, a simpler

controller was chosen for the sake of clarity.
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Fig. 1. a) Switching buck converter and b) ARCP circuit, both with a constant input voltage and a resistive load.

For both circuits, the following values were used: C = 100
pF, L = 100 uH, R = 18 Q. For the ARCP circuit, we also
used C; = C, =40 nF, Lg = 3.5 uH. The time constant of the
integrator was chosen to be T = 0.4 sec, and the switching
period was T = 20 psec. For both circuits the reference
voltage of the controller was chosen to be 150V to produce a
dc output of that value. The input voltage for both circuits
(Vi, in Fig. 1a and 2V;,;=2V,,, in Fig. 1b) was varied between
170V and 400V. Due to the nature of the systems, it is
necessary for their successful operation that the input voltage
be higher than the desired output. For each circuit, periodic

solutions were found for all input voltages.

To use the new method, a state-space model was
developed for each circuit, and Floquet multipliers were
calculated for different input voltages. The maximum
absolute value of Floquet multiplier F,, as a function of the
input voltage is shown in Fig. 2a for the buck converter and
Fig. 2b for the ARCP circuit. These data were calculated

using the technique described in Section II.

It can be seen from Fig. 2 that, despite the similarity of
the circuits, Floquet multiplier values behave differently for

these two systems. For the buck converter, the largest
multiplier value F,.,l;’a‘f(k increases as a function of the input

voltage between 170V and approximately 337.2V. It crosses
the value of unity at about 236.1V, which means that between
170V and 236.1V the periodic solutions for the buck

a) The largest absolute vaiue of Floquet multipfier vs input voltage, buck converter
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Fig. 2. The largest absolute value of Floquet multiplier vs input voltage
for a) buck converter; b) ARCP circuit.

converter are stable, and between 236.1V and 337.2V they

are unstable. At 3372V, due to a transition into

discontinuous mode of operation, the value of Flf,fa‘f(k falls
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abruptly, which results in stable periodic solutions between
337.2V and 400V for the buck converter circuit.
For the ARCP circuit, although the largest Floquet
ARCP
F max

multiplier value is not constant as a function of the

input voltage, it can be seen from Fig. 2b that for all the

values of the input voltage F,,faic“’ is well below unity. This

means that periodic solutions for the ARCP circuit are stable
between 170V and 400V. This result was confirmed by time-

domain simulation, as were the results for the buck converter.

The reason for greater stability of the ARCP circuit is the
presence of an intrinsic stabilizing mechanism that exists in
the system. The switching of the ARCP circuit is discussed
in detail in [10]. The first stage of the switching cycle, before

the switch S, is turned off and the capacitor C, starts

charging, takes longer if the current through the inductor L
is higher, which happens in the case when the voltage across
the capacitor C is higher. A longer initial stage reduces the
time when C is being charged, thus lowering the voltage
across it. Similar argument can be applied for the case when

the output voltage is lower than the desired value.
IV. SUMMARY AND CONCLUSION

A new method was developed for exact nonlinear stability
analysis of piecewise-LTI switching circuits. This method
can be applied to circuits with multiple switches and
discontinuous modes. Based on the expressions of the
developed approach, a computer program was created that
can quickly evaluate the stability of a given periodic solution
for a system described by a state-space model. The program
was tested on two practical circuits, when the results of
analysis were compared against those obtained using
numerical simulation. In both cases the stability results
obtained using the new method were confirmed by standard
techniques. To conclude, the new method provides a fast and
accurate way of stability analysis of periodic solutions for

power circuits.
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